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Abstract: Developing a complex product in a concurrent engineering environment requires managing information flow 

among ten or even hundreds of people of different specialties organized in a large number of product development (PD) teams. 

Managing these teams effectively requires understanding the level of information dependencies among them which are often 

vague and cannot be precisely predicted. Taking into account the limitations of relevant previous studies, this article proposes a 

fuzzy-social network analysis approach for modeling and analyzing the information flow among PD teams. The approach 

involves four major steps: mapping of dependencies, measuring the level of information dependencies based on the fuzzy set 

theory, visualizing the network, and performing quantitative analysis using three measures (network density, in-degree 

centrality, and out-degree centrality). To validate its practicality, the approach is used to model and analyze the dependencies 

among 22 PD teams in a real project adapted from the literature and involved developing an automobile engine. An advantage 

of the approach is that in addition to providing a holistic view of the interactions among PD teams, it permits PD project 

managers to identity the most important PD teams with respect to information flow control using a proposed new classification 

system that classifies PD teams under four categories: autonomous, receivers, transmitters, and transceivers.  
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1. Introduction 

Developing innovative products rapidly at a minimum cost 

is essential to maintain high competitiveness in increasingly 

global markets [1-3]. To overcome the limitation of a lengthy 

and traditional serial product development process, many 

companies opted to adopt the engineering and management 

philosophy of concurrent engineering that emerged in the 

1980s for product development [4, 5]. In addition to reducing 

product development time, and thus time to the market, the 

reported benefits of this practice include reduced costs, fewer 

engineering changes, a lessening of defects, a reduction of 

rework and scrap, higher quality and return on assets [6]. In 

concurrent engineering, the product development process can 

be accelerated through performing parallel and 

interdependent (coupled) activities in addition to dependent 

activities by cross-functional product development (PD) 

teams. These teams need to continuously exchange 

information on specified activities to integrate the product’s 

final structure [7]. Thus, communication between and among 

PD teams can be described by an information structure 

created by unidirectional and bidirectional information 

transmission among PD teams. This structure can be complex 

due to performing a large number of coupled activities, 

which are essential for achieving high efficiency and optimal 

performance in concurrent product development [8]. The 

structure can be even more complex in projects that involve 

developing complex products—such as automobiles, 

airplanes, and others—that require the involvement of 

hundreds or even thousands of specialists. For instance, the 

number of people involved in developing an automobile can 

reach more than 1600, whereas the number of those working 

on the development of an airplane can reach more than 

16,000 [9]. Therefore, creating effective information flow 

among PD teams is a critical success factor in PD [10-14]. 

The concern of this current paper is on modeling and 
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analyzing information flow among PD teams, which is an 

important aspect for creating effective communication and 

coordination strategies, thus creating an improved PD 

process [14]. A brief review of the studies that have 

addressed this issue is given below. 

2. Literature Review 

McCord and Eppinger [15], perhaps, one of the earliest 

studies tackling the issue of how to capture and analyze 

information flow among PD teams. In that study, design 

structure matrix (DSM) was utilized to capture the frequency 

and direction of information flow among teams in an 

automobile engine development project. Browning [16] 

investigated mechanisms among cross-functional 

development teams and then applied them to developing a 

Boeing F/A-18E/F program. This study was then 

complemented by the work of Eppinger [17], in which 

clustering was used to reorganize the teams to improve in-

stream integration. Loch and Terwiesch [8] developed a 

model for information dependency among teams who 

perform overlapping activities. Additionally, they created an 

overlapping model for managing interdependent tasks. To 

facilitate organizing teams in concurrent engineering 

projects, Leenders and Dolfsma [18] put forward a method 

for grouping interdependent design. The method involves 

using DSM to represent binary relationships among tasks 

after which the relationships are quantified using analytic 

hierarchy process. In Batallas and Yassine [7], DSM usage is 

complemented with social network analysis (SNA) to 

identify vital team players in PD networks as well as to form 

an information leader’s team—a central team that can deal 

with large amounts of information, which can often cause a 

bottleneck. Kratzer et al. [19] investigated relationships 

among product development teams and their creativity. The 

relationships among teams were measured using a rating 

scale “(0 = no interaction; 1 = (at least) monthly interaction, 

2 = (at least) weekly interaction; and 3 = (at least) daily 

interaction)”. These relationships were then modeled by a 

social network. Chu et al. [14] proposed to use a DSM based 

approach for measuring interaction strength among PD 

teams, and then to use a two-stage clustering criterion model 

for clustering organizational units in order to reduce 

coordination time. 

Clearly, above brief review demonstrates that few studies 

have dealt with issue of modeling and analyzing information 

flow among PD teams. The most common tools in these 

studies are DSM and SNA. DSM was originally developed 

by Steward [20] for representing the interactions among 

components of system, product, or process. Since then, DSM 

has become one of the most widely used modeling 

frameworks across several areas of research, including 

engineering management, engineering design, systems 

engineering, and management/organization science [21]. A 

traditional DSM is an n x n square matrix, where n is the 

number of elements to be modeled (e.g., development teams). 

In this matrix, the elements are listed at the top and along the 

left-hand side. If element i depends on element j (e.g., team i 

needs information from team j), then a mark “•” or “×” is 

inserted in cell eij. Otherwise, cell eij is left blank. 

Alternatively, “ones” and “zeros” are used instead of marks 

and empty cells. In some DSM applications, the weighted 

relationships among elements are considered. One limitation 

of DSM is that it does not reveal accumulated or multilevel 

dependencies [22]. The other limitation of DSM and its 

variants is the lack of measures that can be used for 

measuring properties of information flow to analyze the 

location of individual PD teams within the information 

network, and thus identify the important PD teams that might 

need special attention for improving the PD process. To 

overcome this limitation, Batallas and Yassine [7] used SNA 

and seven associated measures, namely, degree centrality, 

closeness centrality, betweenness centrality, and four 

brokerage measures (gatekeeper, liaison, internal coordinator, 

and external coordinator). The top 10 scoring PD teams in 

these measures are considered as the most significant in 

terms of information flow control. Moreover, Batallas and 

Yassine [7] proposed two procedures for selecting the most 

important teams in case of the appearance of some teams in 

the top 10 positions in more than one measure. 

3. Research Objectives 

Regardless of the used tools (whether DSM or SNA), a 

common limitation of most previous studies is the use of 

binary relations (0 or 1) or weightings assuming that they can 

be easily predicted to represent the relationships among PD 

teams. In practice, the relationships cannot be binary and the 

level of information dependencies among PD teams are often 

vague and cannot be precisely predicted. Taking into account 

the limitations of relevant previous studies, this current paper 

proposes using a fuzzy-SNA approach for modeling and 

analyzing information dependencies among PD teams. By 

modeling and analyzing information dependencies using the 

proposed approach, the most important PD teams with 

respect to information flow control can be easily identified. 

The remaining part of the paper is organized as follows. A 

brief introduction to SNA is given in Section 4, and Section 5 

describes the proposed approach. Lastly, Section 6 contains 

the conclusion of this research. 

4. Social Network Analysis (SNA) 

SNA emerged in the 1930s in the field of sociology to 

study the relationships between social entities, referred to as 

actors [23]. However, during the past three decades, SNA has 

been progressively applied to various other fields, including 

project and engineering management, where its applications 

were extended to modeling interactions among non-human 

objects [5, 18, 24-26]. Most of the early SNA applications 

considered either binary or weighted relationships among 

actors. However, there has been recent interest in using a 

fuzzy approach to SNA to deal with vague and imprecise 

relationships among actors in some applications [27-32]. 
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A main advantage in the use of SNA is visualizing the 

interactions among the actors by a network consisting of 

nodes and arcs. The arcs can be either directed or undirected. 

Moreover, SNA helps in analyzing the structure of a network 

using several measures. Among the most applicable measures 

for analyzing information dependencies among PD teams are 

network density (a network-level measure) in conjunction 

with degree-centrality measures (node-level measures). In the 

context of this current study, network density can be used as 

an indication of the level of the complexity of managing a 

project due to the complex dependencies among PD teams. 

The implication is that, if the network density is found to be 

high, then an action need be implemented to reduce the 

network density, for instance, by combining highly 

interdependent PD teams into one team. Degree-centrality 

measures are useful for the identification of the importance 

and/or classification of actors based on their relationships 

with others in the network. 

5. The Proposed Approach 

The proposed approach for analyzing dependencies among 

PD teams involves four major steps: (1) mapping of 

dependencies (2) measuring the level of information 

dependencies, (3) visualizing the network, (4) and 

performing quantitative analysis. These steps are explained 

through a demonstrative example adapted from McCord and 

Eppinger [15], which involves redesigning a small block V-8 

automotive engine at General Motors by the following 22 

teams, where a team is defined as a group of people with 

different specialties who work together and hold regular 

meetings 

 

1. Engine Block 

2. Cylinder Heads 

3. Camshaft/Valve Train 

4. Pistons 

5. Connecting Rods 

6. Crankshaft 

7. Flywheel 

8. Accessory Drive 

9. Lubrication 

10. Water Pump/Cooling 

11. Intake Manifold 

12. Exhaust 

13. E.G.R. 

14. Air Cleaner 

15. A.I.R. 

16. Fuel System 

17. Throttle Body 

18. EVAP 

19. Ignition 

20. Engine control module 

21. Electrical System 

22. Engine Assembly 

 

5.1. Mapping of Information Dependencies 

In this step, a team of experts comprising a senior designer 

from each team is formed. The first task of this team is to 

prepare a matrix called “Structural Self-Interaction Matrix” 

(SSIM), adapted from the interpretive structural modeling [33]. 

In this matrix, four symbols are used to denote the direction of 

information flow between PD teams i and j, as follows: 

(1) V means that PD team i transmits information to PD 

team j (a forward relationship) 

(2) A means that PD team j transmits information to PD 

team i (a backward relationship) 

(3) X means that PD team i and PD team j exchange 

information (a mutual relationship) 

(4) O means that PD team i and PD team j do not exchange 

information (no relationship) 

Table 1. Structural Self-Interaction Matrix. 

PD Teams 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

1 X X V X O O O A O X X X X X X X X X X X X 

2 X X V X O A A V O X X X X X X V X V X X 
 

3 X X V X O O O O O O O X X X V O X O X 
  

4 X V O X O O A O O O O A X X O A X X 
   

5 X O O O O O O O O O O O A X O O X 
    

6 X V X X O O O O O O O O A X X X 
     

7 A X A O V A A A O V O V V V V 
      

8 X X X X A X X X X X X X X X 
       

9 X X V X O O O O O O X V X 
        

10 X X V V O X X V A X V X 
         

11 X V X X X X X X X X X 
          

12 X X X X O O A X X X 
           

13 X X X X O X X X O 
            

14 O O O O O X X X 
             

15 X X X O O X V 
              

16 X X V V X X 
               

17 X O X X X 
                

18 V X X O 
                 

19 X X X 
                  

20 X X 
                   

21 X 
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For the demonstrative example, the relationships among 

the PD teams are extracted from the original data. 

Accordingly, the SSIM given in Table 1 is constructed. The 

SSIM is then converted to an n x n adjacency matrix, where n 

represents the number of PD teams “by substituting the four 

symbols (V, A, X, or O) with 1s and 0s. The rules for the 

substitution are as follows: 

(1) “If the (i, j) entry in the SSIM is V, then the (i, j) entry 

in the adjacency matrix becomes 1 and the (i, j) entry 

becomes 0. 

(2) If the (i, j) entry in the SSIM is A, then the (i, j) entry 

in the adjacency matrix becomes 0 and the (i, j) entry 

becomes 1. 

(3) If the (i, j) entry in the SSIM is X, then the (i, j) entry 

in the adjacency matrix becomes 1 and the (i, j) entry 

becomes 1. 

(4) If the (i, j) entry in the SSIM is O, then the (i, j) entry 

in the adjacency matrix becomes 0 and the (i, j) entry 

becomes 0” [34]. 

Making the above substitution for the demonstrative 

example produces the adjacency matrix shown in Table 2. 

Table 2. Adjacency matrix. 

PD Teams 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1. Engine Block 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 

2. Cylinder Heads 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 

3. Camshaft/Valve Train 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 

4. Pistons 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 

5. Connecting Rods 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

6. Crankshaft 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 

7. Flywheel 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 

8. Accessory Drive 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

9. Lubrication 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 

10 Water Pump/Cooling 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 

11. Intake Manifold 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

12. Exhaust 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 

13. E.G.R. 1 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 

14. Air Cleaner 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 

15 A.I.R. 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 

16. Fuel System 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 

17. Throttle Body 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 

18. EVAP 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 1 

19. Ignition 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 

20 E.C.M 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 

21. Electrical System 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 

22. Engine Assembly 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 

 

5.2. Measuring the Level of Information Dependencies 

In this step, the binary values in the initial adjacency 

matrix are replaced with weights representing the level of 

information dependencies among PD teams using a fuzzy 

membership function [35]. These functions can be of 

different shapes, but triangular membership functions are 

used most frequently [36]. A triangular function is defined by 

a lower limit a, an upper limit c, and a value m, where a < b 

< c The points a, b, and c represent the x coordinates of the 

three vertices of membership function“�Ã���”in a fuzzy set 

A, defined by equation (1). 

�Ã��� = 	

�
	
	
	
	
	

0	� < �

��
���

	� ≤ � ≤ �
��

���

	� ≤ � ≤ �
	0	� > �	

	 �
�
�
�
�
�

	                     (1) 

Assigning weight values to the relationships among PD 

teams are obtained as follows. Using the linguistic variables 

given in Table 3, each member of the team of experts is asked 

a number of his/her team to provide their subjective opinion 

on the level of information dependencies on the other PD 

teams identified in the adjacency matrix. For instance, 

according to the adjacency matrix, PD team 18 (Column 3) 

has information dependencies on PD teams 11, 16, 17, 20, 

and 21 (Rows 11, 16, 17, 20, and 21). Therefore, the member 

representing PD team 18 in the team of experts can ask a 

number of his/her PD team to use the linguistic variables 

given in Table 3 to provide their opinions on the levels of 

information dependencies of their team on each of PD teams 

11, 16, 17, 20, and 21. The assigned linguistic variables by 

the members are then changes into their corresponding fuzzy 

numbers shown in Table 3. If the consensus approach is not 

adopted, then the simple average can be used for aggregation. 

Table 3. Fuzzy linguistic scale. 

Linguistic variable Triangular fuzzy number 

No dependency (0.0, 0.0, 0.0) 

Very low dependency (0.0, 0.1, 0.3) 

Low dependency (0.1, 0.3, 0.5) 
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Linguistic variable Triangular fuzzy number 

Medium dependency (0.3, 0.5, 0.7) 

High dependency (0.5, 0.7, 0.9) 

Very high dependency (0.7, 0.9, 1.0) 

Complete dependency (1.0, 1.0, 1.0) 

Once a fuzzy number is obtained for each level of 

dependency, either by consensus or averaging, Equation (2) 

is then used for the defuzzification of the fuzzy numbers into 

the best non-fuzzy performance (BNP) value in order to 

obtain a fuzzy adjacency matrix. 

[( ) ( )]

3
ij

c a b a
BNP a

− + −= +                    (2) 

—where ij indicates the crisp possible rating of the 

dependency between PD teams i and j. 

Unfortunately, the above described procedure for assigning 

linguistic variables to the relationships among PD teams is 

not implemented in this study since the demonstrative 

example is adapted from the literature. In the original data of 

the example, the level of information dependencies among 

PD teams are represented by 5, 3, or 1. Whereas 5 means 

high frequency of information exchange, 3 means medium 

frequency of information exchange, and 1 means low 

frequency of information exchange. Accordingly, this paper 

defined high frequency of information exchange as fuzzy 

triangular number (0.5, 0.7, 0.9), medium frequency of 

information exchange as fuzzy triangular number (0.3, 0.5, 

0.7), and low frequency of information exchange as fuzzy 

triangular number (0.1, 0.3, 0.5). Then by applying equation 

(2), the fuzzy adjacency matrix given in Table 4 obtained. 

Table 4. Fuzzy adjacency matrix. 

PD Teams 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1. Engine Block 0 0.7 0.7 0.7 0.5 0.7 0.3 0.7 0.7 0.7 0.5 0.3 0.3 0 0.3 0 0 0 0.7 0.3 0.7 0.5 

2. Cylinder Heads 0.7 0 0.7 0.7 0.3 0.5 0 0.7 0.3 0.7 0.7 0.7 0.5 0.3 0 0 0 0 0.7 0.3 0.3 0.7 

3. Camshaft/Valve Train 0.7 0.7 0 0.5 0 0.3 0 0.3 0.5 0.5 0.3 0 0 0 0 0 0 0 0.7 0.3 0.5 0.5 

4. Pistons 0.7 0.5 0.3 0 0.7 0.7 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0.3 0 0.3 0.7 

5. Connecting Rods 0.3 0 0 0.5 0 0.7 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0.5 

6. Crankshaft 0.7 0.3 0.3 0.5 0.7 0 0.7 0.5 0.5 0 0 0 0 0 0 0 0 0 0.7 0.5 0.3 0.7 

7. Flywheel 0.3 0 0 0.3 0 0.7 0 0 0.3 0 0 0 0 0 0 0 0 0 0.7 0.3 0.5 0.5 

8. Accessory Drive 0.7 0.7 0 0 0 0.5 0 0 0.3 0.7 0.7 0.3 0.3 0.7 0.7 0.5 0.5 0 0.5 0.3 0.3 0.5 

9. Lubrication 0.7 0.3 0.5 0.5 0.5 0.7 0.3 0.3 0 0.5 0.3 0.3 0 0 0 0 0 0 0.3 0.3 0.5 0.7 

10 Water Pump/Cooling 0.7 0.7 0.3 0.5 0.3 0.3 0 0.7 0.3 0 0.7 0.3 0.3 0 0.3 0.3 0.5 0 0.3 0.7 0.3 0.5 

11. Intake Manifold 0.3 0.7 0.3 0.3 0 0 0 0.7 0 0.5 0 0.7 0.7 0.7 0.5 0.7 0.7 0.3 0.5 0.5 0.3 0.7 

12. Exhaust 0.3 0.7 0 0 0 0 0 0.5 0.3 0 0.7 0 0.7 0.3 0.7 0 0 0 0.7 0.3 0.7 0.5 

13. E.G.R. 0.3 0.3 0 0 0 0 0 0.5 0 0.3 0.7 0.7 0 0 0.3 0.3 0.5 0 0.3 0.5 0.3 0.5 

14. Air Cleaner 0 0 0 0 0 0 0 0.5 0 0.3 0.5 0.3 0 0 0.5 0.3 0.7 0 0 0 0 0 

15 A.I.R. 0 0.5 0 0 0 0 0 0.7 0 0 0.5 0.7 0.3 0.7 0 0.3 0.3 0 0 0.5 0.3 0.5 

16. Fuel System 0 0.5 0 0.5 0 0 0 0.7 0 0.3 0.7 0.5 0.3 0.3 0 0 0.5 0.5 0.7 0.7 0.5 0.7 

17. Throttle Body 0 0.3 0 0 0 0 0 0.7 0 0.3 0.7 0 0.3 0.7 0.3 0.3 0 0.7 0.3 0.5 0 0.5 

18. EVAP 0 0 0 0 0 0 0 0.3 0 0 0.7 0 0 0 0 0.3 0.7 0 0 0.7 0.3 0.3 

19. Ignition 0.7 0.5 0.3 0.3 0 0.5 0 0.3 0.3 0 0.5 0.5 0.3 0 0 0 0.3 0 0 0.7 0.7 0.3 

20 E.C.M 0 0 0 0 0 0.3 0 0.3 0 0 0.5 0.5 0.7 0 0.5 0 0.7 0.5 0.7 0 0.7 0.5 

21. Electrical System 0.7 0.3 0.3 0 0 0 0.5 0.3 0.5 0.3 0 0.3 0.3 0 0.3 0.5 0 0.3 0.7 0.7 0 0.7 

22. Engine Assembly 0.5 0.7 0.5 0.7 0.5 0.5 0.5 0.5 0.7 0.5 0.7 0.5 0.5 0 0.5 0.5 0.5 0 0.7 0.5 0.7 0 

 

 
Figure 1. Team interaction network. 

5.3. Network Visualization 

In order to comprehend the interactions among the PD 

teams in the project, it would be useful to convert the fuzzy 

adjacency matrix to a network consisting of nodes and arcs—

where the nodes represent the teams, and the arcs represent 

the existence of information flow among them. A visualized 

network can be useful for tasks such as exploring and 

comparing trends of information flow among PD teams. The 

network can be easily constructed using any of the SNA 

software packages with inputting an adjacency matrix. For 

the demonstrative example, the Social Network Visualizer 

(SocNetV) software package is used for constructing the 

network displayed in Figure 1 as well as for performing all 

the computations presented here. In this network, the nodes 

are sized to represent their corresponding out-degree values. 

5.4. Quantitative Analysis and Results 

In this step, the interdependencies among PD teams in 
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terms of information flow are analyzed using density, in-

degree centrality, and out-degree centrality measures. 

As indicated earlier, network density is useful for assessing 

the complexity of the information network structure. The density 

of a network can be computed by adding all the entries of the 

fuzzy adjacency and dividing by the maximum possible number 

of ties (edges). For the demonstrative example, the computed 

information network structure density is 0.3. The in-degree 

centrality of PD team j can be computed by adding all the entries 

in column j of the fuzzy adjacency matrix, whereas the out-

degree centrality of PD team i can be computed by adding all the 

entries row i of the fuzzy adjacency matrix. The computed out-

degree centrality and in-degree centrality values for the 

demonstrative example are given in Table 5. Based on these 

values, PD teams can be classified in in terms of their 

information dependencies by constructing a diagram consisting 

of four quadrants similar to the driving power-dependence 

diagram utilized in cross-impact matrix multiplication applied to 

classification [37]. For the demonstrative example, the 

constructed diagram is shown in Figure 2. As shown in this 

figure, the first quadrant contains PD teams 4, 5, 6, 7, 9, 12, 13, 

14, 15, and 17. These PD teams have relatively low out-degree 

centrality and relatively low in-degree centrality; therefore, they 

can be called autonomous PD teams. The second quadrant 

contains teams with relatively low out-degree centrality but 

relatively high in-degree centrality; therefore, they can be called 

receivers. These PD teams are 19, 20, and 21. The third quadrant 

contains teams 1, 2, 8, 11, and 22 which have relatively high 

out-degree and in-degree centrality; therefore, they can be called 

transceivers. The fourth quadrant contains teams 10 and 16: 

these have relatively high out-degree centrality but low in-

degree centrality; therefore, they can be transmitters. 

Autonomous teams have the least amount of information 

exchange with other teams, i.e., they are insignificant in terms 

of information flow control. On the other hand, transmitters 

and transceivers are the most critical with respect to 

information flow control. Compared to other teams, 

transmitters have low level of information dependencies on 

others, but they are highly depended upon by others. 

Compared to other teams, transceivers have high level of 

information dependencies on others and also they are highly 

depended upon by others. In Batallas and Yassine [7], 

transceivers are also called information leaders. According to 

Batallas and Yassine [7], these teams have challenges, also 

they have opportunities. Since they exchange information with 

a large number of teams (they acquire and the same time send 

information), then in addition to performing their assigned 

tasks, they need also to devote a significant portion of time to 

communicating with other PD teams. Thus, their time need to 

be carefully managed in order to avoid to information 

bottlenecks but not on the expense of completing their 

assigned design work. Form the opportunities side, compared 

to others, these teams have the potential to participate in 

product’s innovation [38] as a result of obtaining new 

knowledge through their interactions with many other teams. 

Table 5. In-degree and out-degree centrality values. 

PD teams In-degree centrality Out-Degree centrality PD Team In-degree centrality Out-Degree centrality 

1 8.3 9.3 12 6.6 6.4 

2 8.4 8.8 13 5.5 5.5 

3 4.2 5.8 14 3.7 3.1 

4 6 5.2 15 4.9 5.3 

5 3.5 2.3 16 4 7.4 

6 6.4 6.4 17 5.9 5.6 

7 2.3 3.6 18 2.3 3.3 

8 9.2 8.2 19 9.5 6.2 

9 5.5 6.7 20 8.6 5.9 

10 6.1 8 21 8.2 6.7 

11 9.4 9.1 22 11 10.7 

 
Figure 2. Out-in-degree centrality diagram. 
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6. Conclusions 

Modeling and analyzing information flow among PD 

teams is a challenging issue for product development projects. 

DSM and SNA were found to be most commonly used tools 

in the literature. This study proposed to overcome some of 

the highlighted limitation of these tools by using a fuzzy 

SNA. In addition to quantifying level of information 

dependencies among PD teams, the proposed approach 

involves the usage of three measures, namely, density, in-

degree and out-degree centrality. The last two measures are 

used for classifying the PD teams into four categories: 

autonomous, receivers, transmitters, and transceivers. PD 

teams belonging to the last category are the most important 

teams since the level of information either received form 

others or transmitted to others are high. In Batallas and 

Yassine [7], these PD teams are called information leaders. 

Thus, one advantage of our approach is to identify those PD 

teams by using only two measures. Another advantage of the 

suggested approach is the utilization of fuzzy set theory to 

deal with imprecise and vague information dependencies 

among PD teams. The value of the proposed approach was 

shown via an illustrative example adapted from the literature 

and involved a PD project comprising 22 teams for 

developing an automobile engine. 

However, the proposed approach has several limitations 

that might be overcome in future studies. First, this study 

assumes that the level of information dependencies among 

PD teams remains fixed throughout project execution. 

Second, although fuzzy sets may be a suitable approach for 

quantifying the level of information dependencies; some 

other approaches may be explored. Lastly, besides the 

measures utilized in this study and in previous studies, other 

measures likely exist that might be useful for analyzing 

information flow from different perspectives. 
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